科学研究

当前位置:澳门威斯尼人平台登陆 > 科学研究 > 中国科大实现半导体量子比特的高效调控,苏州

中国科大实现半导体量子比特的高效调控,苏州

来源:http://www.tessiz.com 作者:澳门威斯尼人平台登陆 时间:2019-09-14 00:15

我国学者量子计算研究获新进展 实现三量子点半导体比特高效调控

近日,由中国科学院院士、中国科学技术大学教授郭光灿领导的中科院量子信息重点实验室在新型量子比特编码方面取得新进展。该实验室郭国平研究组在半导体量子芯片中,引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,成功实现了量子比特能级的连续调节,极大增强了杂化量子比特的可控性。 开发与现代半导体工艺兼容的电控量子芯片是量子计算机研制的重要方向之一。由于固态系统环境复杂,存在着电荷噪声、核磁场等各种退相干机制,不同形式的编码方式均存在一定局限,比特的超快操控与长相干往往不可兼得。研究组于2016年利用量子点的非对称性,构建电子与自旋杂化态,首次在砷化镓半导体双量子点芯片中实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特[Phys.Rev.Lett.2016,116,086801],将电荷量子比特超快特性与自旋量子比特的长相干特性融为一体,实现了超快操控和长相干的兼得,将传统电荷量子比特的品质因子(相干时间与操控速度的比值)提高了十倍以上。 为了提高杂化量子比特能级可控性,研究组将非对称思想进一步运用到三量子点系统,将原有的双量子点结构扩展成线性耦合三量子点系统。通过理论计算分析,研究组发现当中间量子点与其两侧量子点耦合强度非对称时,电子在双量子点中演化的能级结构可以被第三个量子点高效地“间接”调控。在实验中,研究组通过半导体纳米加工工艺精确地制备出非对称耦合三量子点结构。利用电子的原子壳层结构填充原理,化解了多电子能级结构复杂性难题,构造了具有准平行能级的杂化量子比特。在保证比特相干时间的情况下,通过调节第三个量子点的电极电压,清晰地观察到比特能级在2GHz至15GHz范围内连续可调。该研究不仅为杂化量子比特的可控性问题提供了一个可能的解决方案,也为半导体量子计算提供一种新的调控思路。 相关研究成果发表在PhysicalReviewApplied上,审稿人认为这是基于自旋量子计算方面的一个重要进展,同时为多电子量子点器件的研究提供了新视野。该研究得到了科技部、国家自然科学基金委、中科院和教育部等的资助。 论文链接

我校郭光灿院士领导的中科院量子信息重点实验室在新型量子比特编码方面再取新进展。该实验室郭国平教授研究组在半导体量子芯片中,创新性地引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,成功实现了量子比特能级的连续调节,极大地增强了杂化量子比特的可控性。相关研究成果发表在2017年12月29日出版的《PhysicalReviewApplied》上。 开发与现代半导体工艺兼容的电控量子芯片是量子计算机研制的重要方向之一。由于固态系统环境复杂,存在着电荷噪声、核磁场等各种退相干机制,不同形式的编码方式都有一定局限,比特的超快操控与长相干往往不可兼得。研究组于2016年利用量子点的非对称性,构建电子与自旋杂化态,首次在砷化镓半导体双量子点芯片中实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特[Phys.Rev.Lett.116,086801],将电荷量子比特超快特性与自旋量子比特的长相干特性融为一体,实现了鱼和熊掌的兼得,将传统电荷量子比特的品质因子(相干时间与操控速度的比值)提高了十倍以上。 为了提高杂化量子比特能级可控性,研究人员将非对称思想进一步运用到三量子点系统,将原有的双量子点结构扩展成线性耦合三量子点系统。研究者首先通过理论计算分析,惊喜地发现当中间量子点与其两侧量子点耦合强度非对称时,电子在双量子点中演化的能级结构可以被第三个量子点高效地“间接”调控。在实验中,研究者首先通过半导体纳米加工工艺精确地制备出非对称耦合三量子点结构。利用电子的原子壳层结构填充原理,巧妙地化解多电子能级结构复杂性这一难题,构造了具有准平行能级的杂化量子比特。在保证比特相干时间的情况下,通过调节第三个量子点的电极电压,清晰地观察到比特能级在2~15GHz范围内连续可调。 高效调控量子点系统能级是半导体量子计算领域的一个难点问题,该工作不仅为杂化量子比特的可控性问题提供了一个可能的解决方案,也为半导体量子计算提供一种新的调控思路。审稿人高度评价这个工作是基于自旋量子计算方面的一个重要进展,同时为多电子量子点器件的研究提供了新视野。(“Thisexperimentmarksagreatadvanceinthefieldofquantum-dot-spinbasedquantumcomputation”,“Theseexperimentsaredifficultones,andthattheyhaveprovidednewinsightstothemulti-electronquantum-dotdevices”) 该工作得到了科技部、国家自然科学基金委、中科院和教育部的资助。澳门威斯尼人平台登陆 1

开发与现代半导体工艺兼容的电控量子芯片是量子计算机研制的重要方向之一。由于固态系统存在着电荷噪声、核磁场等各种退相干机制,不同形式的编码方式都有一定局限,比特的超快操控与长相干往往不可兼得。 在国家重点研发计划量子调控与量子信息重点专项项目半导体量子芯片的支持下,中国科学技术大学郭国平教授研究组在半导体量子芯片中,创新性地引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,成功实现了量子比特能级的连续调节,极大地增强了杂化量子比特的可控性。 该研究组2016年利用量子点的非对称性,构建电子与自旋杂化态,首次在砷化镓半导体双量子点芯片中实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特,将电荷量子比特超快特性与自旋量子比特的长相干特性融为一体,把传统电荷量子比特的品质因子(相干时间与操控速度的比值)提高了十倍以上。为了提高杂化量子比特能级可控性,研究人员将非对称思想进一步运用到三量子点系统,将原有的双量子点结构扩展成线性耦合三量子点系统。利用电子的原子壳层结构填充原理,巧妙地化解了多电子能级结构复杂性这一难题,构造了具有准平行能级的杂化量子比特。在保证比特相干时间的情况下,通过调节第三个量子点的电极电压,清晰地观察到比特能级在2 澳门威斯尼人平台登陆 ,~ 15 GHz 范围内连续可调。 高效调控量子点系统能级是半导体量子计算领域的一个难点问题,该工作不仅为杂化量子比特的可控性问题提供了一个可能的解决方案,也为半导体量子计算提供了一种新的调控思路。相关研究成果发表在2017年12月29日出版的《Physics Review Applied》上,审稿人高度评价这个工作是基于自旋量子计算方面的一个重要进展,同时为多电子量子点器件的研究提供了新视野。来源:科技部

合肥1月2日电近期,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在半导体量子计算芯片研究方面取得新进展。实验室郭国平研究组创新性地引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,极大地增强了杂化量子比特的可控性。国际应用物理学顶级期刊《应用物理评论》日前发表了该成果。

澳门威斯尼人平台登陆 2

开发与现代半导体工艺兼容的电控量子芯片是量子计算机研制的重要方向之一。由于固态系统环境复杂,存在着电荷噪声、核磁场等各种退相干机制,不同形式的编码方式都有一定局限,比特的超快操控与长相干往往不可兼得。郭国平研究组2016年首次在砷化镓半导体双量子点芯片中实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特,将传统电荷量子比特的品质因子提高了10倍以上。

三量子点结构示意图。左侧两个量子点构成杂化量子比特,右侧量子点调节杂化量子比特能级间隔

近期,为了提高杂化量子比特能级可控性,研究人员将非对称思想进一步运用到三量子点系统,将原有的双量子点结构扩展成线性耦合三量子点系统。他们通过理论计算分析发现,当中间量子点与其两侧量子点耦合强度非对称时,电子在双量子点中演化的能级结构可以被第三个量子点高效地“间接”调控。在实验中,他们首先通过半导体纳米加工工艺精确制备出非对称耦合三量子点结构,再利用电子的原子壳层结构填充原理,巧妙地化解多电子能级结构复杂性这一难题,构造了具有准平行能级的杂化量子比特。在保证比特相干时间的情况下,通过调节第三个量子点的电极电压,清晰地观察到比特能级在2至15GHz范围内连续可调。

高效调控量子点系统能级是半导体量子计算领域的一个难点问题,该工作不仅为杂化量子比特的可控性问题提供了一个可能的解决方案,也为半导体量子计算提供了一种新调控思路。

特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

本文由澳门威斯尼人平台登陆发布于科学研究,转载请注明出处:中国科大实现半导体量子比特的高效调控,苏州

关键词: